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Abstract 

A new turbulence model is used to describe the acoustical scattering from 
atmospheric turbulence. A complete set of fluid equations, including the heat 
flow equation with zero conductivity, is presented for an ideal gas atmosphere. 
From this set, a complete set of coupled linear differential equations is de- 
rived for the acoustic pressure, temperature, mass density, and velocity in 
the presence of stationary turbulence. From these acoustic wave equations, 
expressions for acoustic scattering cross sections are derived for individual 
localized stationary scalable turbules of arbitrary morphology and orienta- 
tion. Averages over random turbule orientations are also derived. Criteria for 
comparability of orientationally averaged turbules with different envelope 
functions are presented and applied, and cross sections for Gaussian and ex- 
ponential envelopes are compared. The azimuthal dependence of the velocity 
scattering cross section for a spherically symmetric nonuniformly rotating 
turbule is illustrated. It is shown that, for incoherent scattering, a collection 
of randomly oriented turbules of arbitrary morphology may be replaced by 
an "equivalent" collection of spherically symmetric, nonuniformly rotating 
turbules with randomly directed rotation axes. 
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1.    Introduction 

The motivation for the work described in this report was to investigate the 
utility of a new model of atmospheric turbulence when used to predict scat- 
tering of acoustical signals by the turbulent atmosphere. Much of the in- 
formation in this report we provide in a journal article [1], in which we 
emphasize the aspects of the work strictly related to acoustical scattering. 
In this report, however, we also include aspects of the work not emphasized 
in the article. For example, as part of the work, we examined in detail the 
fluid flow equations to establish the relative order of magnitude of the vari- 
ous terms retained when the acoustic wave equation is derived: for the most 
part, we did not include this analysis in the journal article. We also derived 
the properties of structure functions predicted by the new turbulence model: 
we included in the article only a minor portion of these findings. Instead, the 
structure function findings are recounted in a companion technical report [2]. 
In short, all our findings are included in this report and its companion [2], 
but only those parts closely connected to acoustical scattering are included 
in the journal article [1]. 

Several different approximate wave equations for acoustic pressure or acoustic 
potential have been derived to describe acoustics in a turbulent atmosphere 
[3-11]. Several of these equations are valid only to first order in station- 
ary turbulent temperature variation and/or velocity. These include Monin's 
equation [3] and its short-wavelength limit [4], and Abdullayev's and Osta- 
shev's [8] and Ostashev's [10] generalizations of Monin's equation to include 
water vapor and other additives and nonstationarity of turbulence. These 
first-order wave equations usually provide an adequate basis for describing 
linear atmospheric acoustics because of two general features of turbulent 
atmosphere: first, the ratio of turbulent velocity to acoustic wavespeed and 
that of turbulent temperature variation to ambient temperature are generally 
very small for the atmosphere, and second, turbulent time scales are generally 
much longer than acoustic time scales. Section 2 presents the basic theory 
of acoustic wave equations and the scattering properties of turbulence. Sec- 
tion 3 develops the scattering properties of model velocity and temperature 
distributions. 



Section 2 of this report has four purposes. First, we provide a complete set of 
fluid equations in terms of pressure, density, temperature, and fluid velocity, 
and a complete set of coupled linear differential equations that describe linear 
acoustics in the presence of turbulence in an ideal gas atmosphere. Second, 
we show that Monin's first-order acoustic wave equation results from this 
set. Third, we provide a coherent development of general properties of the 
acoustic scattering predicted by these wave equations, properties that are 
independent of the detailed morphology of the turbulent velocity, density, 
pressure, and temperature fields, but dependent on the wavelength and the 
length scales of the turbulence and the scattering volume. Fourth, we estab- 
lish the basic formulas to be used below and in succeeding reports that will 
treat acoustic scattering by individual localized turbules (or vortons) and by 
ensembles of such turbules. 

Section 2.1 contains a derivation of a complete set of basic fluid equations 
for an ideal gas. In section 2.2, we assume a stationary turbulence model, de- 
rive equations relating the turbulent fields, and then derive the desired linear 
acoustic differential equations. We then show that Monin's equation results 
in the first-order limit. In section 2.3, we develop the general expressions for 
the Born approximation scattering amplitudes and cross sections predicted 
by the equations considered. We show that the length scale as of the scat- 
tering volume is of central importance in predicting the general behavior of 
the acoustic scattering at wavelength A by turbulence of scale length a. For 
example, we show that the short-wavelength limit of Monin's equation should 
be used only if both a > A and a > as, and that the standard predictions 
from Monin's equation are valid for any ratio a/A only if a <C as. We also 
obtain the interesting general result that the first Born forward and back- 
ward scattering due to solenoidal turbulent flow velocity is essentially zero if 
a <C as, but nonzero if a > as. 

In contrast with the turbulence model presented here, standard treatments 
of the scattering of sound waves by atmospheric turbulence have relied on 
describing the turbulence entirely in terms of the autocorrelation or struc- 
ture functions of the turbulent temperature and velocity fields [4,7,10]. This 
approach has been particularly successful for isotropic, homogeneous, fully 
developed turbulence. It has also been used to describe scattering by inho- 
mogeneous and/or anisotropic turbulence [12-14]. Turbulence has also been 
described as collections of individual localized eddies or vortices, often called 
turbules [15,16]. Section 3 describes research aiming at the description of 
scattering and propagation of sound waves in anisotropic inhomogeneous at- 
mospheric turbulence. 



Section 3 considers acoustic scattering by individual turbules. Specifically, we 
describe a general scalable localized static turbule model, valid for solenoidal 
turbule velocities and arbitrary morphology. In section 3.1, we use the results 
of section 2 to obtain general expressions for the acoustic scattering ampli- 
tudes and cross sections due to scattering by the velocity and temperature 
variation fields of such a turbule, in first Born approximation. Then in sec- 
tion 3.2, we describe general expressions for the isotropic ensemble averages 
of these cross sections. Criteria of comparability for ensembles having differ- 
ent envelope functions are specified: namely they should have the same size 
and the same kinetic and thermal energy content. We present two examples, 
with Gaussian and exponential envelopes, respectively, and contrast their 
differential and total scattering cross sections. In section 3.3. we also derive 
the azimuthally dependent velocity scattering cross section for a simple ro- 
tating turbule with a spherically symmetric Gaussian envelope. In addition, 
we prove a general theorem: for many applications, an ensemble of randomly 
oriented turbules of arbitrary morphology may be replaced by an "equiva- 
lent" ensemble of simple turbules, each of which has spherical symmetry but 
rotates nonuniformly about a fixed but randomly directed axis. In section 4, 
we briefly summarize and discuss our results. 



2.    Basic Theory 

2.1    Fluid Equations 

In descriptions of acoustic propagation, the atmosphere is most often treated 
as an ideal gas. That is, viscosity and thermal conductivity are neglected; 
the fluid is assumed to be in local thermal equilibrium. The fundamental 
fluid equations for such a gas are the mass conservation equation, the Euler 
equation, the ideal gas equation of state, and the thermal energy balance or 
heat flow equation without the heat conduction term: 

Dtp + pV-v = 0, (1) 

Dtv + p-lVp-g = 0, (2) 

p = pkBT/M, (3) 

DtU + (p + U)V ■ v = 0. (4) 

Here, p(r, t) is the mass density, p(r, t) is the pressure, T{r, t) is the temper- 
ature, U(v, t) is the internal energy density, v(r, t) is the fluid velocity, kB is 
Boltzmann's constant, g is the vector of acceleration of gravity, and M is the 
average molecular mass, which is constant for the assumed homogeneously 
mixed atmosphere. The operator Dt is the convective derivative, 

Dt = dt + v • V. (5) 

The heat flow equation does not seem to have been used in previous treat- 
ments of acoustic propagation. 

For a fluid in local thermal equilibrium, 

U - ±FÜf, (6) 

where F is the number of degrees of freedom per molecule excited at tem- 
perature T. We have 

cv = (dU/dT)p = pkBF/2M,   cp = cv + pkB/M,   7 = cp/cv = 1 + (2/F). (7) 



Combining equations (3). (4), (6), and (7) yields 

AP + 7PV-V   =   0, (8) 

Ar + (7-i)rv-v = o, (9) 

as alternative forms of the heat flow equation. Furthermore, combining equa- 
tions (1) and (8) yields 

Aln(p/p7) = 0, (10) 

which is clearly the equation for isentropic flow, as given by Tatarskii [7]. 
Thus, we could reverse our derivation and start from equations (1-3) and 
(10). which would then yield equation (8). The set of equations (1-3) and 
(8) or (1-3) and (10) is complete, since it includes six equations for the six 
fields (p.p.T.Vi). 

2.2    Acoustic Equations 

2.2.1    Linear Acoustics 

For linear acoustics, the standard approach is to write each field as a sum of 
a turbulent part and an acoustic part, and retain terms in the resulting equa- 
tions only to first order in the presumably small acoustic part. Because the 
time scales of the turbulent flow are much longer than those of the acoustic 
fields, the time dependence of the former is often neglected: we do that here. 
We define 

p(r,t) = A>(r)(l + e(r,t)), (H) 

p(r,t) = po(r)(l + V(r,t)), (12) 

T(r,t) = T0(r)(l + <5(r,t)), (13) 

v(r,i) = v0(r) + u(r,i), (14) 

where the fields with subscripts o represent the turbulent flow, and unsub- 
scripted fields represent the acoustic flow. We also take the turbulent flow to 
be solenoidal, 

V-vo = 0, (15) 

as is usually done [7]. Then substitution of equations (11-15) into equa- 
tions (1-3) and (8) yields both zero-order equations relating the turbulent 
fields, and acoustic equations linear in (e,r),8,u). The zero-order equations 
are 

v0 ■ Vpo = 0,    v0 • Vpo = 0,    po = p0kBT0/M, (16) 



v0-Vv0 + pölvPo-g = 0. (17) 

The acoustic equations are 

öte + v0-Ve + u-Vlnp0 +V-u =   0,                   (18) 

dtV + Vo- V?7 + u- Vlnpo + 7V-u =   0,                    (19) 

dtu + v0 • Vu + u • Vv0 + 7_1CoV?] + 6Vp0/po = 0, (20) 

6 = V-e, (21) 

where we have denned the adiabatic sound speed c0(r) by 

cl = 7Po/po = lkBT0/M. (22) 

Combining equations (18) and (19) yields an alternative equation relating 
77. e. and u: 

(öt + v0-V)(77-7e) + u-Vln(po/p2) = 0. (23) 

This shows clearly that 77 ^ 76 unless j90/Po is uniform, which is not the case 
in general. 

The acoustic equations (18-21) are a complete set for the acoustic fields 

(e; 77,6,11), provided (r0(r), v0(r)) are given and equations (16) and (17) 

and boundary conditions are used to obtain [po(r), p0{r)). 

In what follows, we describe situations in which the turbulence is localized 
in some bounded volume VT. Outside VT, the pressure, temperature, and 
mass density take on constant uniform values (poo, T^.p^), the flow velocity 
v0 == 0, and the adiabatic sound speed Coo is defined by 

cl = IPoo/Poo = ihvTjM. (24) 

2.2.2    First-Order Acoustic Equations 

In the atmosphere, VQ/C^ and \T0 - T^/T^ are usually of the same order, 
both much less than unity, so it is a good approximation to discard terms from 
the acoustic equations that are second order or higher in these ratios. The 
principal effect of gravity in the atmosphere is to produce internal gravity 
waves, which we neglect. Thus equation (17) shows that Vp0 is a second- 
order quantity. Dropping terms containing Vp0 from the acoustic equations 
(18-20) leaves only two relevant coupled equations, namely, the first-order 
equations (19) and (20). Putting in time dependence exp(- iut) yields 

iuT]   =   7V • u + v0 ■ V?7, (25) 

iuju   =   7_1CoVr; + v0 • Vu + u • Vv0. (26) 



It is simple to eliminate u from these equations and get a wave equation for 
7/ valid to first order in vo/c^. First, replace u by (iw7)_14,V77 in the last 
two terms in equation (26); this is valid to first order. Then evaluate 7V • u 
and substitute it in equation (25). This procedure yields 

(V2 + ife2)i7   =   V • [(ATO/T^VT)] 

+ (ifc/cooH-vo • Vr? + r2V • [v0 • VVr? + Vr? • Vv0]}, (27) 

where 
fc = w/Coo,    ATo/Too = 1 - To/Too = 1 - cg/4,. (28) 

Rearranging terms on the right hand side of equation (27), replacing V2r? by 
- k2r] in those terms, and using equation (15) yields Monin's equation for 77. 
written here in summation notation with d% = d/dxi. 

(V2 + k2)V = dl[(AT0/Too)dlV] + 2iu-ldl{v03djdlr1). (29) 

This is the accepted wave equation for the acoustic pressure variation that is 
valid to first order in the small stationary quantities {vo/c^, ATo/T^). The 
same equation is valid to this order for p' = p0rj, since Vp0 is second order. 
This first-order equation is valid for all turbulent length scales a. If these 
length scales are all very large compared to the acoustic wavelengths (ka » 
1), then derivatives of AT0 and v0 may be neglected; then equation (29) 
reduces to 

(V2 + k2)V « - ^(ATo/Tooto - (2ifc/CooK-a^, (3°) 

which is the same as the first-order wave equation given by Tatarskii [4]. 

Note that our formulation uses a constant reference temperature T^ as the 
temperature outside VT. Conventional treatments use the average tempera- 
ture f in VT as the reference, which might or might not be equal to T^. 

2.3    Scattering 

2.3.1    General Formulation 

Equations (29) and (30) are in the generic form 

(V2 + /c2)7?(r) = -47rS(r)r?(r) (31) 

where S(r) is an operator that is nonzero only inside a bounded volume VT. 
or goes to zero rapidly outside this volume. The operator S may contain 
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derivatives that operate on 7](r). This standard form allows a causal Green's 
function implicit solution for 7?(r), given an incident plane wave 

fknir) = eikr, (32) 

or any other incident wave that satisfies the Helmholtz equation. For an 
incident plane wave, the implicit solution is 

77(1:1) = exp(ik • r2) + fd3r2r^ exp(ifcr12)5(r2)r/(r2), (33) 

where the scattered wave 7/s(ri) is given by the integral. Here, and in what 
follows, r12 = ri - r2, and three-dimensional spatial integrals with no limits 
indicated involve integration over all space. Actually, the integration need 
extend only over the support Vp of £(r2). 

In the far field, the scattered wave has the form 

»fe(r) = r-leikrf(v)., (34) 

where the scattering amplitude /(f) for the scattering volume Vj, is given by 

/(f) = / f d3n exp(- iki ■ r1)S(r1)71(v1), (35) 
•'Vs 

where f = r/r is the radially outward unit vector. 

The scattering volume Vs' is that portion of the volume VT that is observed 
by the detector. In this report, we assume that the detector is in the far field 
of Vg. The criteria for this are 

r»«)2/A,   r»A, (36) 

whichever is greater, where a's is the length scale of Vs' and A = 2TT/k is 
the acoustic wavelength. In actual experimental situations, these criteria are 
seldom fulfilled. 

The differential and total scattering cross sections (a(f), as) of the turbu- 
lence are given respectively by 

a(f) = |/(f)|2,        as = Jdüa(r) (37) 

where the integration extends over 4ir sr (solid angle). 



2.3.2    Born Approximation 

In general, the correct acoustic wave equation would involve an operator 

S = E„Sn, (38) 

where Sn is nth order in the small quantities (vo/coo, AT0/Too). However, 
the wave equations (29) and (30) include only Si, so it makes no sense to go 
beyond the first Born approximation in solving for the scattering amplitude 

Scattering amplitudes. We get the first Born scattering amplitude by 
inserting the incident (plane) wave (eq (32)) in the integrand of equation (35): 

/(f) =  /d3r1exp(-zA;f-r1)51(r1)exp(ik-r1). (39) 
J Vs 

Here, the volume Vs is now determined by the intersection of the portion V^ 
of VT observed by the detector, and the portion V/ of VT directly illuminated 
by the source. If Vj < VT, then Vs < V's. The volume Vs might be regarded 
as the intersection volume of two cones, the detector cone of view and the 
source cone, as discussed by Tatarskii [7]. For convenience in what follows, 
we ascribe a single characteristic length scale as to the volume Vs. 

For wave equation (29), the operator 5i(r) may be written 

Sl(v) = S1T(r) + Slv(r), (40) 

where 

5ir(r)   =   -j-dlUAT0/Toc)d,) = -(i7rToo)-
1[(dlAT0)dl + AT0dldl}, (41) 

AIT 

Slv(r)   =   - (ifauföivojdjdi) = - (z/27rw)[(c^o;)3;di + voßßA) (42) 

are the operators associated with the turbulent temperature variation and 
velocity, respectively. 

It is clear from equation (39) that, for each derivative operator dq that ap- 
pears on the right of the functions AT0 or v0j in Si, we get a factor ikq 

in /(f). However, it is more complicated to describe the general effect of a 
derivative operator that appears on the left of these functions. It must be 
correct to substitute equations (41) and (42) directly into equation (39), to 

/(r) = /r(f) + A,(f), (43) 



fT(T) = {-k2/4itT00) f   ^expt-zK-rO^k-ViATotrO-AToM, (44) 
J vs 

fv(f) = (_ Jt2/27rCoo) f   d
3n exp(- iK ■ ri)[- ik^kkAi^i) + ^oj(ri)L (45) 

where 
K = kr - k. (46) 

But then we cannot draw conclusions about the general behavior of /(f) that 
are independent of the detailed morphology of the turbulence. On the other 
hand, it must also be correct to integrate by parts in equation (39) for /(f). 
For the SIT of equation (41), this yields 

/r(f)   =   {^/AirT^kn I   d3r1AT0(r1)exp(-zK • n) 
J Vs 

-{i/AitT^hi  c?Ei[AT0(r1)exp(-iK-r1)]Es,        (47) 

where the surface integral extends over the surface Es bounding the volume 
Va. 

Consider three cases, as follows: 

Case i. All the length scales a of the localized turbulent eddies that are totally 
or partially included in Vs are much less than as. This is usually the 
case for inhomogeneities in the inertia! range. 

Imagine that a turbulent eddy or turbule is localized in a volume a3 "cen- 
tered" about a random location b. Then, for a < as, the fields (AT0, vQ) of 
that turbule are zero on the surface Es for almost all b. Thus, the surface 
integral in equation (47) is negligibly small compared to the volume integral. 
and the scattering amplitude is given by just the first term of equation (47) 
to good approximation: 

/T(f) = {kZ/AvT^kri [   rf3r1Ar0(r1) exp(- iK ■ n). (48) 
J Vs 

This is proportional to inn = cos (9, where 6 is the scattering angle. This 
result is valid for all ka, for a < as. The corresponding velocity scattering 
amplitude for this case is 

/„(f) = - (fc2/27rc0O)(fcifi)fcj /   d3nv0j(ri) exp(- iK ■ n),        (49) 
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which also displays proportionality to cos#. This neglect of the surface inte- 
grals is usual in standard treatments, such as that by Tatarskii [7]. Scattering 
amplitudes and cross-section results based on equations (48) and (49) have 
previously been given [17] for a particular temperature distribution and a 
particular velocity distribution. 

Case ii. All the length scales a of the turbulent eddies in VT are greater than 
as, and as > A, so ka » 1. This is usually the case for large-scale 
inhomogeneities. 

In this case, the surface integral in equation (47) is not negligible; but we 
can neglect (djAT0, diV0j) in equations (41) and (42). This is equivalent to 
using wave equation (30) rather than equation (29). Dropping the first term 
in the integrand of equation (44), we get 

/r(f) « (A^TTTOO) f   d'nAToiv,) exp(- iK ■ n) (50) 
J Vs 

to good approximation. This is the same as equation (48), except for a factor 
of cos 6. 

The corresponding velocity scattering amplitude for this case is to good ap- 
proximation 

/„(f) « - {k2/2TrCoo)kj I   d3r^0j(ri) exp(- iK ■ n), (51) 
J vs 

which is the same as equation (49) except for a factor of cos (9. 

Case iii. A > a > as, so ka < 1, kas < 1. This case occurs when the detector 
has a limited field of view and turbule sizes are small because of 
interference of the ground. 

In this case, the surface integral in equation (47) is not negligible compared to 
the volume integral, and neither is the first term in equation (44) compared 
to the second. One would thus expect a dip in the scattering near 6 = 90°, but 
not a zero; the scattering amplitude /T(f) of equation (44) directly involves 
the derivative of AT0 (which it does not for cases (i) and (ii) above) and 
similarly for /„(f). The full expressions (44) and (45) should be used. 

It seems worthwhile to note that, if a > as. then both AT0(r) and v0(r) do 
not change appreciably within V^; a turbulent eddy with such a large scale 
length appears to the observer to be a uniform wind field and a uniform 
temperature shift over the volume Vs. For such cases, the fields ATo(rx) and 
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V0j may be taken outside the integrals in equations (44), (45), (50), and 
(51), and evaluated at any point inside Vs, say at some center point rs. For 
example, for very large-scale inhomogeneities, with a » as, ka » 1, equation 
(50) reduces to 

/r(f) = (fc2/47rT,
oo)Ar0(rs) /   d3n exp(- iK • ri). (52) 

In summary, the scale length as of the scattering volume is at least as impor- 
tant as the scale lengths a of the turbulent eddies and the acoustic wavelength 
A = 2ir/k in determining the general behavior of the first Born acoustic scat- 
tering amplitudes. If a <C a8, then for any ka values, equations (48) and (49) 
result. If a > as and ka » 1, then equations (50) and (51) result, which 
are the same as equations (48) and (49), except for the absence of the cos (9 
factor, and the same as would be achieved directly if we started from the 
approximate wave equation (30) instead of from equation (29). If a > as, 
but the ka are not large, then the complete equations (44) and (45) must be 
used. 

Cross sections. From equations (37) and (43), the first Born differential 
cross sections are given by 

<r(f) = <rT(f) + <r„(r) + aTv(r) (53) 

where 

aT(r)  =   |/T(f)|2,   av(r)  =  |/„(f)|2,   aTv{v)  =  /r(r)/;(f) + c. c.    (54) 

If we are interested in the ensemble average over assumed stochastic ho- 
mogeneous turbulent fields (lo(r). v0(r)), and we assume that fluctuations 
in 7o(r) are uncorrelated to fluctuations in v0(r), and (v0(r)) = 0, then 
<<7rv(r)) = 0. 

Consider, for example, the case for (aT(r)) for a «C as. From equations (54) 
and (48). 

(ar(f)> = (/c7l67rX)cos20<|Afo(K)|2) (55) 

where . 
Ar0(K) = /    d3nAT0(ri) exp(- iK ■ n) (56) 

Jvs 

is the Fourier transform of AT0(ri) with respect to the volume Vs. Then for 
homogeneous turbulence, 

(|Af0(K)|2) = f   dznf   d3r25r(ri2)exp(-iK-r12), (57) 
JVS JVs 

12 



where 
Br(r12) = (AToCrOAToCra)) (58) 

is the autocorrelation function of the turbulent temperature variations. Since 
a <C as, the scale length of BT(ri2) is also much less than as. That is, BT(r12) 
goes to zero for r12 > some a', where a' < as. Therefore, the integration 
variables (ri, r2) in equation (57) may be changed to r = ri2, R = (ri+r2)/2, 
and the limits on the integral over r may be changed to all space, while the 
integral over R remains over Vs, with negligible error. Thus we get 

<<7T(f)) = (fc4/167T2T^) cos2 6VSBT(K) (59) 

where 
BT(K)=I d3rBT(r)exp{-iK-r) (60) 

is the full Fourier transform of the autocorrelation BT(r) integrated over all 
space, to good approximation. This formula is generally used in conventional 
treatments of homogeneous turbulence [7]. 

However, consider the opposite limits, a » as, ka > 1. Then from equa- 
tions (54) and (52), 

(ar(f)> « (kA/l6n2Tl)BT(0)\[   d3r1exp(-iK-r1)|
2. (61) 

This is not only missing the cos2 9 factor, but it also has a quite different 
dependence on K from that in the expression in equation (59). 

In the companion report [2], we will assume that Vs is large enough so that 
a < as for all turbulent scale lengths of interest, so that equations (48) and 
(49) apply. This will allow us to compare results using ensembles of local- 
ized turbulent eddies or turbules of different scale lengths with the standard 
structure function results. 

Forward and backward velocity scattering. Consider equation (49) for 
the Born scattering amplitude due to turbulent velocity in case (i), a < as. 
In the forward direction f = k or K = 0, we have 

/„(k) = (/c2/27TCoc)(cosö)^ I   d3rv0j(v). (62) 
J Vs 

Consider the following integral: 

Ij = J   dPrdiivoirj) = Jv  d
3rv0j(v). (63) 
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Since the velocity is solenoidal, diV0i = 0. But by the divergence theorem, 

Ij= f    dEiivoirj)^. (64) 

By the same reasoning used earlier for a <C as, this surface integral vanishes 
(is negligibly small) because for almost all positions of the center of any 
localized eddy, voi is zero on the bounding surface Es. Therefore, if all a < 

Consider the Fourier transform of v0i(r) in the volume Vs: 

mi*) = [   d3re-iK-rv0l(v). (65) 

Again, because diV0i = 0, we have 

KiihiiK) = i [   d'rd^vo^e-^} = i f    dE^Voi^e'^}^.        (66) 

For the same reason as before, the surface integral is vanishingly small if 
a<%:as. From equation (49), the Born scattering amplitude in the backward 
direction f = - k is given by 

/„(_k) = -(k2/2Tic00)(cos8)kivoi(-2k), (67) 

and is therefore zero (negligibly small). This zero result for backward velocity 
scattering was noted by Tatarskii [7]. 

On the other hand, for cases (ii) and (iii), a > aS: the surface integrals 
(64) and (66) are not negligibly small,^ and the Jesuits /„(±k) « 0 do 
not hold. In fact, for a » as, we have kjlj « K%ü0j(rs), and «^(«0 = 
iv0i(vs) /E, dEi[e~iK'r]si. Both are nonzero in general. This is what would be 
expected if we were observing a volume Vs in which there is a uniform wind 
field. 
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3.    Scattering from Model Turbules 

In section 2, we describe some general properties of acoustical scattering by 
atmospheric inhomogenieties, which are true regardless of the internal con- 
figuration or morphology of the inhomogeneity. In this section, we describe 
scattering properties of inhomogeneities with prescribed morphology, as well 
as properties of isotropic ensembles of inhomogeneities with similiar mor- 
phology. 

We define a turbule as a localized eddy or vortex, characterized by a location 
b, a scale length a, and flow velocity and temperature fields (v0, AT0). Here, 
"localized" means that these fields go to zero rapidly for |r - b|   > a. 

In actuality, the fields, the location, and the scale length depend on time. 
As is often done in discussions of interactions of acoustic waves with turbu- 
lence, we neglect this time dependence, and instead treat the location and 
the morphological parameters in (v0. AT0) as stationary but stochastic vari- 
ables.* The fields (v0. AT0) are assumed independent, and may have arbitrary 
morphology. 

We assume, as usual, that the turbule flow is solenoidal: 

V • v0 = 0 -» v0 = V x A0. (68) 

Here, A0 is a vector field. 

Since we are interested ultimately in ensembles of self-similar turbules of 
different scale lengths, we assume that the functional forms of (A0, AT0) 
satisfy 

A0(r) = aA(0,        AT0(r) = T«, - T0(r) = T(£), where £ = (r - b)/a. (69) 

Here, T0(r) is the temperature field, and T^ is the uniform constant reference 
temperature outside the turbule. These are general scalable forms, chosen for 
convenience so that the functions (A(£), T(£)) have the dimensions (velocity, 
temperature), respectively. Then equation (68) yields 

v0(r) = Vc x A(0- (70) 

'This means that Doppler shifts cannot be described. 
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3.1    General Expressions 

We use the expressions for the first Born scattering amplitudes derived in 
section 2, equations (48) and (49), for a <C as, where as is the scale length of 
the scattering volume: 

/T(f)   =   -(fc2/47rroo)cosöAf0(K), (71) 

/„(f)   =   -(/c2/27rCoo)cosök-v0(K). (72) 

Here, (Af0(K), v0(K)) are the Fourier transforms of (AT0(r), v0(r)), respec- 
tively, and for acoustic wave time dependence exp(-iu)t), 

k = u/Coo, K = k{v - k), K = 2k sin(0/2), (73) 

where 0 is the (polar) scattering angle, that is, the angle between the incident 
plane-wave propagation direction k and the observation direction r. Also, 

Coo = (7/CBTOO/M)^ (74) 

is the adiabatic sound speed outside the turbule; here, 7 is the specific heat 
ratio, M is the mean molecular mass, and kB is Boltzmann's constant, The 
Fourier transforms are defined by 

ATo(K) = ftnAToirJe-<*■'*,   v0(K) = Jd3rv0(vi)e-iKr\        (75) 

where the integrals here have been extended over all space, since a < as. 

Combining equations (68-75) yields the following general expressions for the 
scattering amplitudes for a turbule localized around r = b: 

/T,l)(f,b) = e-iK-b/T,,(f), (76) 

where 

/T(f)   =   -(fcV/47rroo)cosÖT(Ka), (77) 

./„(f)   =   -i(/c3a4/27rCoo)sinöcosö[^-Ä(Ka)] (78) 

are the scattering amplitudes for a turbule localized around the origin. 

The scaled Fourier transforms (T, A) are given by 

f(y) = /d3£T(£K^y,   A(y) = j^A^)e-^y, (79) 
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and 
(p = — ei sin if + e2 cos '-p (80) 

is a unit vector in the direction of increasing azimuthal scattering angle $. 
The ej (i = 1, 2, 3) are Cartesian basis vectors. 

Note the sinöcosö dependence in /„; this occurs for arbitrary turbule mor- 
phology, and implies that the first Born scattering is_zero in the forward and 
backward directions, as well as at 6 = TT/2, since A(y) is bounded every- 
where for a localized bounded A(£)- That /v(k) = /„(-k) = 0 was shown 
in section 2 to be a general consequence for localized solenoidal turbulent 
velocities for a <C as: equations (68-78) constitute another general proof of 
that result. 

Another useful expression for /„ results from using equation (73) in equa- 
tion (78): 

/„(f) = -i(yt2a3/27rCoo)cosöcos(ö/2)(Ä'a)(^- A(Ka)). (81) 

The differential scattering cross sections are given, as usual, by 

a(f) = |/(f,b)|2,   /(r\b) = /„(f,b) + /r(r\b). (82) 

Thus 

where 

<x(f) = OT(T) + av{r) + aTv(r) (83) 

<rT(f)= |/T(f)|2   =    (A:4a6/167r2r^)cos2öir(Ka)|2 _ (84) 
av(v) = \fv(v)\2   =   ^4a6/47r24)cos2Öcos2(ö/2)(Xa)2|^.A(Ka)|2, (85) 

<TTV(T)   =   /r(*)/;(f) + c.c. (86) 

Note that these cross sections are independent of turbule location b. Also 
note the implicit dependence of av on the azimuthal scattering angle if. 

The total scattering cross sections are the integrals of these over ATT sr (solid 
angle). 

We cannot go further unless we choose specific functional forms for (T(£), 
A(£)), or unless we average general forms over orientations and morphologies. 
In section 3.2, we consider isotropic ensembles of turbules of scale length a. In 
section 3.3, we choose instead one simple specific form, in order to illustrate 
the azimuthal dependence of the velocity scattering that must occur (but 
which disappears for isotropic ensembles). We also use this simple form to 
show that general isotropic ensembles may often be replaced by ensembles of 
spherically symmetric, nonuniformly rotating turbules. 
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3.2    Isotropie Ensembles 

In a follow-up report [2] we will compare (1) the scattering produced by 
isotropic ensembles of turbules of different scale lengths and locations with (2) 
the scattering predicted by the conventional structure functions of isotropic 
homogeneous fully developed turbulence. We will need ensemble averages 
over the orientation parameters of the individual turbules; thus we derive 
these here. 

3.2.1    Orientation Averages 

Imagine a static turbule of scale length a, such that in a "primed" frame of 
reference (its "rest frame"), it has arbitrary morphology. A subensemble is 
formed by the application of different static rotations R(ip) to this generic 
form, with all rotations equally probable for an isotropic case. Here ip = 
(•01, "02, ^3) are the three Euler angles that characterize a rotation. Consider 
first the temperature field. In the primed frame, we may write in general 

|fV)|2 = Eimaem(y)Yem(e'^') = \f (y)|2, (87) 

where the last equality follows because of scalarity, and the sum is a generic 
expansion in spherical harmonics in the primed frame, with given but arbi- 
trary aim(y). But we know that the spherical harmonics in the two frames 
are related by 

Yem(6', if/) = Em-it,'(Ä'(ö. ¥>)> (88) 

where the D£
mm,(i;) are the irreducible representations of R(ip) for integer t 

For all rotations equally probable, we then want 

D'mm)^ = (87T2)-1 J2V dA J\^3 £ d^2smiP2D
e

mm,(iP) = 6tfi6m,o6m'to-        (89) 

Thus, 
(|r (y)|2)^ = aoo(y) = n3(ST)2B2

T(y)., (90) 

which is a function of y — |y| only. Here, ST is a temperature variation 
amplitude parameter. We do not specify the dimensionless real-valued enve- 
lope function BT(y) at this time; we present two examples (Gaussian and 
exponential) in section 3.2.3. 

Consider now the velocity field. For an isotropic ensemble, each component of 
an otherwise unrestricted vector field must be statistically independent and 
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have zero mean, and each component must obey the same statistics. Thus 

we may put 

(My)h = o, 
{My)Ä*(y)U   =   \ir%v2B2

v{y), (91) 

where v is a velocity amplitude parameter. The envelope function Bv(y) may 
be different from BT{y). It is important to note that equation (91) yields the 
usual form for (v0i{K)v *0l (K)) = <MK)> namely 

$0.(K) = (St, - Kikj) (function of |K|). (92) 

This follows because of equation (70). 

From equations (84) to (86), we have, for an isotropic ensemble of scale length 

a, 

äTv(r)   =   0, (93) 
efr(f)   =   {7ta2){5TIAT^)2{kaf cos2 9B2

T{Ka), _ (94) 
äv(r)   =   l(7ra2)(v/2Coc)

2(ka)4cos2ecos2(e/2)(Ka)2B2
v(Ka).    (95) 

The implicit ^-dependence of a„(f) in equation (85) for an individual turbule 
is eliminated by the isotropic averaging process. 

3.2.2    Comparable Turbules 

It is important to be able to compare the scattering produced by ensembles 
of the same scale length, but different morphologies (i.e., ensembles char- 
acterized by different envelope functions B(y)). In this report, we choose 
comparable turbules to be those having the same rms radius and the same 
average energy content. 

One way to define an rms radius is to write 

a2
ms = a2Jd^eB(0/ jd^B(a (96) 

where B(£) is the inverse Fourier transform of B(y), 

S(0 = (27r)-3|dV*y£(v)- (9?) 

This is equivalent to 

(arms/a) = {-V2
yB(y)/B(y)}lQ. (98) 
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We adopt this definition. 

The kinetic energy content of the ensemble average turbule of scale length a, 
to lowest order in v0 (second order), is proportional to 

jdzr{v2{v)). (99) 

Substitution of equations (69), (79), and (91) shows, after a little algebra, 
that this integral is proportional to 

£v^lv\27r)-^jd3yy2B2
v(y). (100) 

We take the excess internal (thermal) energy content of the ensemble average 
temperature turbule to be proportional to 

£r = [(8/(27r)3/2)/^<r2(£))]" = [(8/(2n)9'2)f<Py(\f(y)\2j\K      (101) 

3.2.3    Examples 

(a) Gaussian envelope. For convenience, we let 

BT(y) = Bv(y) = Bg(y) = e-y2/\ (102) 

Such forms have been used in the literature [15]. Equations (98), (101), and 
(102) then yield 

arms/a = pJ2.,    £r9 = 6Tg,    £vg = v2
g. (103) 

The ensemble average differential scattering efficiencies follow from equations 
(94) and (95): 

WTg(r)/na2   =   (<5r5/4T00)
2(fca)4cos2öexp [ - (ka)2(l - cos6)], (104) 

Gvg{i)lita2   =   i(vg/2Cx>)2{ka)6 sin26cos26exp[-(ka)2{l-cos9)], (105) 

where we define a scattering efficiency as the ratio of a cross section to 7ra2. 
These differential scattering efficiencies are plotted in figures 1 and 2 as 
functions of scattering angle 6 for several different size parameters (ka), nor- 
malized to unit values of STg/T^ and Vg/c^. These expressions yield exactly 
the same dependence of the scattering on 9, k, and a as the expressions in 
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Scattering angle, 9 (c 

120     140      160     180 

Figure 1. Temperature scattering efficiency är/^a2 versus scattering angle 6. for 6T/TX = 
1.0. for a Gaussian isotropic ensemble of turbules of scale length a, for several size param- 
eters ka = 2-na/X. A = acoustic wavelength, in Born approximation. 

20        40        60        80       100       120 
Scattering angle, 9 (°) 

140      160     180 

Figure 2. Velocity scattering efficiency äv{6)/xa2 versus scattering angle 6, for V/cx — 1.0. 
for a Gaussian isotropic ensemble of turbules of scale length a, for several size parameters 
ka = 2-Ka/X, A = acoustic wavelength, in Born approximation. 
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Meliert [18] for a Gaussian spectrum of temperature and wind velocity fluc- 
tuations. That is. a Gaussian envelope function for an isotropic ensemble 
of turbules of a single scale length is the same as a Gaussian spectrum for 
isotropic turbulence of a single scale length, as would be expected. 

The total efficiencies are given by 

äTg/jra2   =   2n(6Tg/4Toc)
2(x-2 + 2/x)-e-2x(x + 2 + 2/x),   (106) 

ajva2   =   (27r/3)(t;s/2Coo)
2a:[(l + e~2x){2 + 24/x2) 

-(l-e-2x)(10/x + 24/x3)], (107) 

where x = (ka)2. 

In figure 3, the numerical integration of the differential scattering efficiencies 
are plotted versus ka for unit öT/T^ and v/c^. For small ka, the total 
efficiencies reduce to 

(47r/3)(5rg/4T00)
2(fca)4, (108) aTg/na2 

Wyg/Tta2 

For large ka, they reduce to 
— /       2 a-Ygjiia 

— I       2 ovg/ixa 

i(87r/15)(V2Coo)
2(fca)e 

27r{STg/4T00)
2{ka)2, 

(4ir/3)(vg/2C(X>)
2(ka)2. 

(109) 

(110) 

(111) 

0.2       0.4      0.6 0.8        1 1.2      1.4 
Size parameter, ka 

1.6 

Figure 3. Total Born approximation (temperature, velocity) scattering efficiency 
(äT/xa2,äv/Tra2) versus size parameter ka = 2na/X, X = acoustic wavelength, a = turbule 
scale length, for a Gaussian isotropic ensemble, for ST/Toc = v/cx = 1.0. 
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As is well known, the Born approximation fails in the limit of arbitrarily 
large ka; the actual total scattering efficiencies should be independent of ka 
in this limit. But we cannot simply apply higher order approximations for the 
scattering amplitudes for large ka, because the wave equations used are valid 
only to first order in VQ/C^. In order to obtain trustworthy expressions for 
scattering cross sections for very large size parameters, we must first obtain 
and solve wave equations valid to all orders of fo/coo and its derivatives. 

Several features of the above results are remarkable. If (ST/T^) fa {v/cx), 
then Wvg <C aTg for small ka. while ävg ~ WTg for large ka. Also. Wvg(r) = 
0 for 6 = (0,7r/2, 7T), while oTg(i) is a maximum in the forward direction. 

(b) Exponential envelope. Again for convenience, we let 

BT(y) = Bv(y) = Be(y) = (1 + y2/a2)-\ (112) 

where a is a parameter to be adjusted. This corresponds to the following 
envelope function in position space: 

Be(0 = (2n)-3Jd3ye*yBe(y) a (l + aOe"*. (113) 

The presence of the factor (1 + a£) is necessary in order to ensure that the 
turbule velocity field is bounded at £ = 0. 

Equations (98), (100), and (101) then yield 

W« - Vi8/a,   ET< = g^) V,   Sm = gg*       (114) 

Comparing equation (103) yields 

a = \/l2,   6Te = (0.84)(STg),   ve = 0Mvg: (115) 

we make this comparison so that these exponential model turbules of scale 
length a have the same ensemble average values as the Gaussian model for 
(arms, £Te, £ve), i-e-; 

so that the two ensembles of different average morphology 
be "comparable." 

The ensemble average differential scattering efficiencies then follow from 
equations (94) and (95): 

äTe(r)/7m2   =   (0.70)(<5re/4roo)
2(fca)4cos2ö[l + i(/ca)2(l-cosÖ)]    , (116) 

ä„c(f)/7ra2   =   1(0Al)(ve/2Coc)
2(ka)6 sin2 9cos2 ö[l + l(ka)2(l-cos 9)}~6.        (117) 
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These are plotted in figures 4 and 5 as functions of scattering angle B for 
several size parameters ka. for unit values of öTe/T^ and Ve/c^. 

The calculations for the total cross sections versus ka are algebraically quite 
complicated. We give the small ka limits only; the curves of figure 6 were 
found by direct numerical integration of the differential cross sections, equa- 
tions (116) and (117). For small size parameters, we have for the total effi- 
ciencies 

äTe/ita2 « (47r/3)(0.70)(<5r3/4Too)
2(A;a)4 « (0.70)(äT9/7ra2), (118) 

äve/ira2 « i(0.41)(87r/15)(V2Coo)
2M6 « (0.41)(ä,5/7ra2). (119) 

Thus, for small ka, the total cross sections for the exponential ensemble are 
smaller, but of the same order as those for the Gaussian ensemble. Figures 3 
and 6 allow a comparison of the total efficiencies versus ka. 
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Figure 4. Temperature scattering efficiency WT0/na2 versus scattering angle 9. for 
ST/Toc = 1.0. for an exponential isotropic ensemble of turbules of scale length a. for 
several size parameters ka = 27ra/A, A = acoustic wavelength, in Born approximation. 
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20 40        60 80        100 

Scattering angle, 6 (c 
120      140      160     180 

Figure 5. Velocity scattering efficiency äv6/ira2 versus scattering angle 9, for v/cx = 
1.0, for an exponential isotropic ensemble of turbules of scale length a, for several size 
parameters ka = 2-najX, X = acoustic wavelength, in Born approximation. 

0.2      0.4      0.6 0.8 1        1.2 
Size parameter, ka 

1.4 1.6       1.8 

Figure 6. Total Born approximation (temperature, velocity) scattering efficiency 
(ar/Tra2,^./™2) versus size parameter ka = 2na/X, X = acoustic wavelength, a = turbule 
scale length, for an exponential isotropic ensemble, for ST/T^ = v/coc = 1.0. 
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3.3    Individual Turbule Model 

This section illustrates the azimuthal dependence of the velocity scattering 
from even the simplest model turbule, and shows that all isotropic ensembles 
may indeed be composed of such simple model turbules. For example, suppose 
we choose 

A(£) = ue-«2, (120) 

where u is a constant vector, as the simplest Gaussian turbule model. Then 
we have, from equation (69), 

v0(r) = V?xA(£) = 2ux£e-?2. (121) 

If we define 
u=iaft (122) 

and use the definition of £ (eq (69)), we get 

v0(r) = [Q x (r - b)] exp [-(r - hfl a2] . (123) 

Thus, this model of a single turbule represents a nonuniform rotation, with 
angular velocity parameter O, of a spherically symmetric Gaussian turbule 
of scale length a, centered at r = b. 

The Fourier transform of A(£) is given by equation (79); we have 

A(y)=7:3/2ne-y2/\ (124) 

We write ü in terms of its polar and azimuthal angles: 

ü = ei sin 9U cos <pu + e2 sin 9U sin ipu + e3 cos 9U, (125) 

whereby from equations (80) and (85), the first Born differential scattering 
efficiency is 

av{v)/ira2 = {kaf (v/2Coo)
2 sin2 9 cos2 9 sm2 0„sin% - ipu) exp [-{ka)2(l - cos9)] .   (126) 

This exhibits strong azimuthal dependence. It is zero if 9U = 0 or 7r(ü = ±k), 
and if ip = (<£>„, <pu±7r). That is, it goes to zero if ü is in the plane of incidence, 
the plane whose normal is k x f. 

If we average over random directions of ü, using 

(47T)-1 r dipu r d9usm9u[sm29usm2(ipu - <p)] = 1/3, (127) 
Jo Jo 
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we get 

äv(r)/Tra2 = i(fca)6(W/2Coc)
2sin2#cos20exp [-(ka)2(l - cos8)} ,     (128) 

which is identical with equation (105) for the Gaussian ensemble, if u = vg. 
In fact, from equations (124) and (127), we have 

(My)Ä*(y)) = fr%u*e-*l\ (129) 

which yields, from equations (91) and (102), for the choice u = vg, 

Bl(y) = e-y2l\ (130) 

the same envelope function as that chosen for the Gaussian ensemble. The 
same conclusions could be drawn for all individual turbules of the generic 
form ___ 

A(0 = u/(0-A(y)=u/(y), (131) 

where u is a constant vector that may have any direction and magnitude, 
and / is a scalar function of £ =  |£|. The corresponding velocity field is 

v0(r) = Vc x A(0 = - (u x 0(r7'(0)- (132) 

If we define ft as in equation (122), and h(£) = - K_1/'(0. then we have 

v0(r) = [fix(r-b)]M|r-b|/a). (133) 

This shows that the vector u is along the spin axis fi of any simple model 
turbule. All such "simple" turbules are rotating, in general nonuniformly, 
with spherically symmetric envelopes. 

For random orientations of u, we have (uiUj) = \£>ijU2, and thus 

(My)Ä*(y)) = \u2\~f{y)\%v (134) 

whereby from equation (91), we can identify 

B2(y) = 7r-3\f(y)\2(u2/v2) (135) 

as the corresponding isotropic ensemble envelope function. 

Similar considerations apply for the temperature. Consider a spherically sym- 
metric turbule with AT0(r) = T(0,f = |£|- Then, 
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\f(y)\2 = (\f(y)\2)=A8T)2B*(y), (136) 

since orientation averaging has no effect on a spherically symmetric function. 

Based on these considerations, we can reach the following important con- 
clusion: Every ensemble of randomly oriented static turbules of a given 
scale length, within which each member has arbitrary morphology, is equiv- 
alent to a single turbule with a spherically symmetric temperature variation 
Ar0(r) = T(f), and to a collection of simple turbules with velocity vector po- 
tential A(£) (given by eq (131), with u a randomly oriented constant vector). 
The specific equivalence is established by equations (135) and (136). Here, 
"equivalent" means "produces the same (incoherent) acoustic scattering." 
This theorem is similar to that for "equivalent spheres" that may replace a 
collection of randomly oriented dielectric particles of arbitrary morphology 
in incoherent electromagnetic scattering. 

As in the electromagnetic case, the theorem is valid only for incoherent scat- 
tering from an actual collection of turbules. But this case is of great im- 
portance and generality. On the other hand, if coherence is important in 
the calculation of multiple scattering from an actual collection of randomly 
oriented turbules of general morphology, then we should not perform the ori- 
entation averaging until after we have solved for the scattering cross sections 
of the whole collection, for each of many realizations of the collection. In 
such cases, replacement of the actual collection of turbules by a collection of 
simple turbules will not yield the same result. 
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4.    Summary and Discussion 

We describe the following principal results in this report: 

i: A complete set of fluid equations involving the pressure, temperature, 
mass density, and flow velocity is presented for an ideal gas atmosphere 
for which viscosity and thermal conductivity are neglected. These equa- 
tions include equations (8) or (9) as the heat flow equation. 

ii: Prom this set, a complete set of coupled linear differential equations 
is derived for the acoustic flow velocity and the variations of acoustic 
pressure, temperature, and mass density relative to underlying station- 
ary turbulent fluid fields. Equations relating the turbulent fields are 
also derived. 

iii: We show that the coupled acoustic differential equations yield Monin's 
wave equation for the acoustic pressure when only first-order terms in 
the turbulent temperature variation and velocity fields are retained. 

iv: We show that the length scale as of the scattering volume is just as 
important as the acoustic wavelength A and the length scales a of the 
turbulence in predicting the general behavior of the far-field acoustic 
scattering by turbulence in a first Born approximation. In particular, if 
a <C as, then the standard results (eq (48) and (49)) for the scattering 
amplitudes, proportional to cos 9, result from Monin's equation for all 
a/A. If both a > as and a/A » 1, then the scattering amplitudes (eq 
(50) and (51)) result, which are those predicted by the short wavelength 
limit of Monin's equation, the same as equations (48) and (49) but 
without the cos 9 factor. If A > a > as. other results occur. 

v: For solenoidal turbulent velocity fields, we show that both forward and 
backward velocity scattering are essentially zero for all a/X if a <C as, 
but nonzero if a > as. 

The first-order results of this report for a <C as have been applied to scatter- 
ing by individual turbules. In a followup report [2], we will develop similar 
results for ensembles of turbules, and a connection will be made to the Kol- 
mogorov spectrum, a Gaussian spectrum, and the standard structure function 
development for isotropic homogeneous turbulence. 
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In the work reported here, we have also found expressions for the mean 
temperature and velocity differential, as well as total scattering cross sec- 
tions in first Born approximation for a randomly oriented stationary turbule 
of a given scale length, but arbitrary morphology. We have obtained and 
compared expressions for these mean cross sections for both Gaussian and 
exponential envelope functions of the turbule temperature variation and ve- 
locity. We have given a somewhat arbitrary but general recipe for adjusting 
the parameters for ensembles of turbules with different envelope functions so 
that they have essentially the same size and energy content. We have shown 
that the simplest possible model for an individual turbule (a spherically sym- 
metric structure spinning nonuniformly about a fixed axis) still yields strong 
azimuthal dependence in the velocity scattering. Also, we have shown that 
we can always find an ensemble of these simplest model turbules, with ran- 
dom orientations of the spin axes, that produces the same ensemble average 
incoherent scattering as an ensemble of randomly oriented turbules of ar- 
bitrary morphology. We have also given formulas that yield the equivalent 
simple turbule parameters in terms of any given actual ensemble averages 
<|f(y)|2}, {My)Ä*(y)). 

In a future report [2], we will make use of these results to construct an 
isotropic homogeneous ensemble of turbules having different scale lengths 
and locations, and to derive the conditions for the existence and the bounds 
of the Kolmogorov (von Kärmän) spectrum and a Gaussian spectrum for 
the incoherent scattering from such an ensemble. In later work, we hope to 
be able to use the results of this report to treat the problem of incoherent 
scattering produced by anisotropic inhomogeneous ensembles of turbules. 
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